Garment analysis and specification development

- Garment analysis is to meet particular business needs:
 - Consider cost and quality.
 - Strategic plan for product lines.
- Garment analysis guide:
 1. Style description
 2. Positioning strategy
 3. Sizing and fit
 4. Materials selection
 5. Components assembly
 6. Final assembly and finishing
 7. Style presentation

Style Description (Part 1)

- The purpose:
 - Identification and development of a complete description of a style.
- Style specifications are being developed:
 - Line adoption has taken place.
 - Assigned a style number, the key identifier of the garment.
 - Determine body types and size ranges for the style.
 - To communicate identity of the style using specifications include brand, style number, merchandise group, selling period, body types and size ranges, etc.
 - See Example 5-1 pp. 134–135

Positioning Strategy (Part 2)

- The purpose:
 - Foundation for garment analysis.
- Factors:
 - Example: Functional/Aesthetic priorities
 - Factors are useful in describing product's purpose and styling.
 - To position a product to make it desirable for a particular target market.
- What is the primary requirement?
 - See each factor description p.136–138.

Sizing and Fit (Part 3)

- Size is labeled in a manner that allows customers to find the right size.
- Sizing standards
 - To offer consistency in fit among styles, product lines, and seasonal offerings.
- Sizing systems and size ranges
 - Sizing systems = Sizing standards
 - For apparel sizing, body types are classified by body proportions as related to age and gender.
 - Examples: See Figure 5-3, p. 139.
- Indicators of size:
 - General body size (S, M, L, XL)
 - Numbers (Size 6, 12, 18)
 - Misses 8, 10, 12; Junior 7, 9, 11.
 - Numbers do not indicate the actual garment dimensions.

Industry sizing standards
- Inconsistent sizing systems (see Table 5-2, p. 144).
Materials selection (Part 4)

- Materials = Fabrics and Findings:
 - Findings: all the rest of materials required to complete garments
 - Support/shaping materials, trims, labels, threads, etc.
- Criteria for analysis of materials
 - Material name, content, yarn type and size, fabrication, count, weight, drapability, structural design, color application, finishes, care, method of application.
 - See Example 5-4, p. 148.

Garment Analysis

- Part 1 style description
- Part 2 positioning strategy
- Part 3 sizing and fit
- Measure garments from ADM 4307 Blue packet

Influences on the Design Process

- Fashion Focus on the product line
 - Collections: the leading edge of fashion.
 - Knockoffs: adoptions or modification
- Size and organization of the firm
 - Small firms or Large firms
 - Freelance designers: sell original designs
 - Outside design studios: offer specialized service market research or international sourcing.
- Use of licensing
 - Private label for retail stores (exclusive license)
 - Example: Jaclyn Smith for Kmart
 - Merchandising calendar (see p. 165).
 - Timing of product development processes.
 - About 30 weeks 47 activities.

Creative design process

- Developing the line concept
 - Inspiration board and concept board
 - Creating designs for merchandise groups
 - Creating original designs
 - Croquis, flats, drapes.
 - Modification of styles from previous season’s line.
 - Copying styles (knockoffs).
- Selecting fabrics and garment finishes
 - Exclusivity of fabric design (confine).
 - Fabric cost
 - Fabric characteristic affecting utilization
 - Differences in the face and back
 - Lengthwise symmetry, crosswise symmetry, need to match the design, width of fabric (60 inch or 45 inch)
 - Garment finishing
 - Chemical treatments for wrinkle resistance / Garment dying
- Establishing garment fit
 - Basic blocks: a set of pattern pieces.
 - Reflect the firm’s sizing standards and fit.
 - Style blocks: a variation of the basic block to include comfort and styling ease.
 - Patterns: guides for cutting fabric to form a garment.
 - Flat pattern or draping
 - Creative design prototype
 - Sample makers work with designers.
Creative design process

- Costing designs and developing design specifications
 - Pre-costing based on a sketch.
 - Design specifications (p.182)
- Line adoption
 - A design becomes a style when it is accepted into the line.
 - Identifier: through technical design: style number.
- Technical design
 - “A group of processes required to perfect a design into a style and make the style producible with the fit and quality level desired by the target customer.”
 - Perfection of style and fit
 - Production patterns and grading
 - Style specifications: example Figure 6-11, p. 190
 - This includes detailed costing that is based on style samples and specifications.
- Product quality and consistency (important !!!)

Apparel design technology

- Computer Aided Design (CAD)
 - Pattern making, grading, marker making

MTM software

V-Stitcher software (3D to 2D)

Mass customization of MTM

Preproduction operations

- Initiation of preproduction operations
 - Technical designers and production pattern makers develop the patterns for styles accepted into the line.
 - Pattern verification checking list:
 - Correct size and style number marking
 - Correctness of grade increments
 - Compatibility of grading with style specifications
 - Length and alignment of adjoining seam allowances.
 - Notch placement and alignment with adjoining pattern pieces.
 - Placement of internal markings
 - Placement of grain markings.
Initiation of preproduction operations

Cut order planning:
- Customer orders into cutting orders.
- Remember! "Cut to Order" vs. "Cut to Stock" production.
- Cut plan:
 - Based on "Defect maps" that identify locations of breaks and flaws, width and length variations of pieces on a role.
 - Estimate the number of piles based on defect maps (=Chart spreading).
- Marker planning:
 - Determine the most efficient combination of sizes and shades for each order (Optimal use of materials and cutting systems).
 - One cutting order may require several markers.
- Example: Remnant marker for the short pieces and ends of roles.
- Lay planning:
 - A lay is a stack of fabric plies prepared for cutting.
 - Managing cutting room labor and table space.
- Spreading and cutting schedule are affected by:
 - Table length, type of equipment, spread length, spreading time, and cutting time.

Dimension of marker making

- Blocked (or Sectioned) markers:
 - Contain all the pattern pieces for 1 style in 1 or 2 sizes.
 - Advantage: Used to adjust the volume requirements (Example: for a remnant marker).
 - End to end shade variations of the fabric. See Figure 13-2, p. 398
 - Stepped spread.
- Continuous markers:
 - Contain all the pattern pieces for all sizes in a single cutting.
 - Advantage: Better utilization.
 - Planned with Sliced Markers:
 - To avoid excessive fabric waste and incomplete pieces. See Figure 13-3, p. 398

Marker making

- A marker making:
 - Is the process of determining the most efficient layout of pattern pieces for a specified style, fabric, and distribution of sizes.
- Marker making methods:
 - Manually produced markers:
 - Errors (poor line definitions, placement and alignment of pieces), time consuming, space.
 - Computerized marker making:
 - Marker efficiency, reuse of previously made markers, shortest response time. (save up to 50 piece marker).
- Plotting:
 - Printing pattern pieces or markers
- Dimensions of markers:
 - Fit the "cuttable" widths of fabric (e.g. 59/60"
 - NOTE: Selvages are not usable!

Marker efficiency

- Marker efficiency:
 - Determined by fabric utilization (Example: U=91.26 %)
 - % of the total fabric that is actually used in garment parts.
 - How tightly the pattern pieces fit.
- Factors that affect marker efficiency:
 - Fabric characteristics (fabric design)
 - Shapes of pattern pieces (irregular shape)
 - Grain requirements

Marker types and mode

- Types of markers:
 - Open markers (for unfold fabric)
 - Closed markers (fold a half)
- Marker symmetric and direction:
 - Symmetric/Asymmetric fabrics
 - Directional/Non-directional fabrics
- Marker mode:
 - Nap-one-way (N/O/W)
 - Nap-up-and-down (N/U/D) - e.g. size 7 down/ size 9 up
 - * Nap: indicate fabric direction

[Spreading]

- Spreading:
 - The process of superimposing lengths of fabric on a spreading table. (1~300 plies)
 - Spreading modes (See Figure 13-4, p. 403)
 - Directions of fabric face:
 - Facing-one-way (F/O/W)
 - Face-to-face (F/F)
 - Direction of fabric nap. (N/O/W or N/U/D)
 - K/F with NUID: the fastest method, least costly, and the lowest quality.
 - F/O/W with NUID: more time-consuming, expensive.
- Spreading quality:
 - Fabric defects
 - Stack tension
 - Flatness of a spread (selvages or skewed)
 - Ply alignment
 - Static electricity
Cutting and Off loading

- Portable cutting knives:
 - Vertical straight knives
 - Rotary (round) knives (See pp.414~415)
- Stationary cutters:
 - Band knives
 - Die cutting
- Computerized knife cutters:
 - Gerber Technology, Inc.
 - Lectra Systems (laser cutting)
- Off loading:
 - Off loading is the process of removing cut parts from the cutting table, counting, ticketing, and grouping them.
 - Done through bundle tickets with cutting orders:
 - To monitor the progress of each garment
 - To ensure that all the correct parts are assembled
 - To compensate operators for their work on each garment

Next class

- Read Ch.7, and 9.
- Submit Assignment #2 (Garment Analysis)
- Assignment #1 presentation.