Lecture 2-2: Workplace Design

ENVD 5380 Human Factors/Ergonomics in Environmental Design
(ENVD 5311-001 Design & Ergonomics)
By Su-Jeong Hwang Shin, Ph.D.

Work Spaces (Sanders, Ch.13)

- Work space envelopes:
 - It means the 3 dimensional space within which an individual works. (e.g. the space within which the hands are used.)
 - This topic is related to physical space and arrangement.

- Related to the concept of work space envelopes:
 - Out-of-reach requirements
 - The distances required to prevent a person from reaching something (usually hazardous) over a barrier.
 - Clearance requirements
 - The minimum space needed to move through a tight space or perform work in a confined area.

Effects of direction of reach

- Effects of direction of reach and presence of restraints on work-space envelope.
 - Results based on the study (Roth, Ayoub, & Halcomb, 1977).
 - They measured the functional arm reach of subjects at various lateral angles from a dead-ahead seated position (from -45° left to +120° right) and at various levels (ranging from -60° to 90°) from a seat reference point (SRP).
 - Measurements were taken of the "grasp-center" reach point at 114 such locations, under both restrained and unrestrained conditions.
 - In the restrained conditions
 - The shoulders were held back against the seat back.
 - In the unrestrained conditions
 - The subjects could move their shoulders.
 - The type of restraint can influence the functional arm reach.
 - Based on study of comparing three types of vehicle seat restraint (Garg, Bakken, and Saxena, 1982).
 - The less the restriction, the further the reach.

- Effects of manual activity on work-space envelope.
 - Grip strength and the dynamic reach envelope (= kinetosphere)
 - Hand grasp: thumb tip measurement are about 2 in or more shorter than finger tip measurements (Bullock, 1974).
 - Different hand grasp actions influence the space envelope (Dempster, 1955).
 - Dempster’s (1955) study involved grasping a handlelike device with the hand in 1 of 8 fixed orientations (supine, prone, inverted, and all five spatial angles). Photographic traces of contours of the hand and the movement.
 - Kinetosphere is developed for each grasp, showing mean of three angles: top (transverse), front (coronal), and side (sagittal).
 - The shaded areas indicates the various types of hand grips could most adequately be executed by people.
Effects of apparel

- Effects of apparel on work-space envelope.
 - The apparel worn by people can restrict their movements and the distances they can reach, and can influence the size of the work space envelope.
 - Winter jackets restricted reach by 2 in (Sanders 1977).

Work-space envelopes for standing personnel

- Standing reach is a matter of body equilibrium
 - The reach envelop will be modified by any factor.
 - Reach is diminished if a weight is carried in the reaching hand or if an obstacle is placed behind a person that limits counterbalancing activities.
- The Zone of Convenient Reach (ZCR)
 - ZCR as the space in which an object may be reached within arm’s reach. (Pheasant, 1986).

Work-space envelopes

- Discussion of Work-space envelopes
 - The reasonable limits of such space are determined by "functional arm reach"
 - Functional arm reach is influenced by such variables as:
 • Direction of arm reach
 • The nature of the manual activity
 • The use of restraints
 • Apparel worn
 • The angle of the backrest
 • Personal variables such as age, sex, ethnic group, and handicaps.
 - Design such space for the 5th percentile of the using population, thus making it suitable for 95 percent of population.
 - Consider special populations the design of the work space requires particular attention.

Design: Out of reach

- Out of reach requirements
 - Things not to be touched (e.g. children play room)
 - Design space, a barrier of some height is place between the person and the object.
 - How far? It depends on:
 • 1) the height of the barrier
 • 2) the height of the object.
 - Example: Thompson (1989) using males of the 99th percentile in stature measured maximum reach for various combinations of these two variables (see Sanders, Figure 13-8, p. 436).
Design: Out of reach

Design: Clearance

• Clearance requirements
 – Move through, work in, or just fit into spaces.
 • Example: some unusual circumstances, such as the sleeping space needed by long haul truck drivers.
 • Sanders (1980) reports the dimensions of the preferred and prostrate (face-down) postures of the 95th percentile drivers.

Design: Clearance

Design of work surfaces

• Work surfaces
 – Within the envelope of a workplace, specific design decisions need to be made about various features of the workplace, the location and design of work surfaces
 • e.g. surface involved benches, desks, tables, etc.
 • Examples of the work surfaces:
 – Horizontal work surface area
 – Work surface height: seated
 – Work surface height: standing

Design: Horizontal work surfaces

• Horizontal work surface area
 – To be used by seated and “sit stand” should provide for manual activities to be within convenient arm’s reach.
• Work surface area definition and dimensions
 – Normal area and maximum area (Barnes, 1963)
 • Normal area:
 – The area can be conveniently reached with a sweep of the forearm while the upper arm hangs in a natural position at the side.
 • Maximum area:
 – The area could be reached by extending the arm from the shoulder.
 – Work surface area with the dynamic interaction of the movement of the forearm as the elbow is moving (Squires, 1956).

Working Area (NWA or MWA)

• Normal working area (NWA)
 – NWA allows hand motion to be made in a convenient zone with normal energy expenditure.
 – Area described by the arms and hands with the elbows flexed at ~90 degree.
 – Typically, the comfortable limit of outward rotation is about 25 degree.
• Maximum working area (MWA)
 – MWA is the intersection of the ZCR with the horizontal surface such as table or bench.
Design: Horizontal work surfaces

- Slanted surfaces for visual tasks:
 - They found that subjects using slanted surfaces (12° and 24°) had better posture
 - reported less trunk movement, less fatigue, and less discomfort than when using horizontal surfaces.
 - Bridger (1988)
 - Slanted surfaces 15°
 - Less bending of the neck, more upright trunk

Seated work surface height and nature of the task

- Work surface height: seated
 - The surface height should be adjustable to fit individual physical dimensions and preferences.
 - The work surface should be at a level that places the working height at elbow height.
 - The work surface should provide adequate clearance for a person's thighs under the work surface.

Design: Work surface height

- Work surface height: standing
 - The surface height is related to the nature of task.
 - Heights for precision work, light work, and heavy work as related to elbow height (Grandjean, 1988)
 - For light and heavy work are below elbow height
 - For precision work is slightly above elbow height.
Design Ergonomic Chair

- Why an ergonomic chair?
 - The average office loses over $7300 per employee per year in poor productivity and medical and workers' compensation claims (the bureau of labor statistics).
 - Over 50% are low back injuries. Poor chair design contributes to poor seated posture which plays a major role in these injuries (e.g. secretary back syndrome).
 - Musculoskeletal discomfort (Ong et al., in work with computers, 330-337, 1989)
 - Survey of 672 full-time computer users complaints related to poor ergonomic furniture, including the chair.
 - Musculoskeletal discomfort (Ignatius et al., Journal of Human Ergology, 22, 83-93, 1993)
 - Survey of 170 women typists working at computers, Mismatch between chair height and desk height and poor furniture design related to symptoms.

Myths of ergonomic seating

- Ergonomic seating always requires a single, cubist (90 degree upright) postural orientation that is independent of the user's task (Dainoff, 1994).
- You can judge how ergonomic a chair is by briefly sitting in it.
- Users should be able to adjust everything.
- Users don't need training on how to sit in a chair (Dainoff, 1994).
- One chair design will provide the best fit for all users.

Principles of ergonomic seat design (Sanders, 1993)

- Promote Lumbar Lordosis
 - Definitions:
 - In standing, lodotic inward arch: the lumbar portion of the spine (the small of the back, just above the buttocks) is naturally curved inward (concave).
 - In sitting, Kyphotic outward bend (convex). Lumbar kyphosis results in increased pressure on the discs.
 - Reclined postures often are preferred (Grandjean, 1988).
 - In unsupported sitting or forward leaning the lumbar spine may be in kyphosis, which is undesirable.
 - During supported sitting the lumbar spine should be maintained in lordosis by an adjustable lumbar support.
 - The use of a 2 inch thick lumbar support had a impact on maintaining lumbar lordosis with a seat backrest angle of 90 degree. When the backrest angle was reclined to 110 degree, the lumbar spine resembled closely the lumbar curve of a person standing (Anderson et al. 1979).
 - A forward-tilting seat produce a more relaxed posture (Mandal, 1985).
 - Lordotic effect of forward-tilting seats was small and depended on other factors such as seat height and table top slant (Bendix, 1986).

- Minimize disc pressure
 - Lumbar disc pressure varies with back posture and the load in the hands (Nachemson, 1974).
 - Unsupported sitting in an upright, erect posture (forced lordosis) resulted in a 40 % increase in pressure compared to standing (Nachemson& Elfstrom, 1970).
 - Unsupported sitting in a forward slumped posture increased pressure 90% compared to standing (Nachemson& Elfstrom, 1970).
 - Use of a reclined backrest has an effect with reductions in pressure by reclining backrests from vertical (90°) to 100 to 110 ° . Use of a lumbar support reduces disc pressure as does the use of arm rests. (Anderson, 1987)

Principles of ergonomic seat design (Sanders, 1993)

- Minimize static loading of the back muscles
 - Back muscle pain
 - Backrest angle and muscle activity:
 - Muscular activity as measured by electromyography (EMG) is similar when standing or sitting. EMG activity decreases when sitting in a forward slumped posture, even though maximum pressure on the discs (Anderson, 1987).
 - A reduction in muscular activity in the back when the backrest was reclines up to 110 degree (Anderson, 1987).
Principles of ergonomic seat design (Sanders, 1993)

- **Reduce postural fixity**
 - The problems of postural fixity, sitting in one position for long periods without postural movement were found (Grieco, 1986).
 - Postural fixity promotes static loading of the back and shoulder muscles, restriction in blood flow to the legs, discomfort.
 - Chair design can reduce postural fixity some by allowing the user to rock in the chair and assume a variety of postures.

- **Adjustment features for an ergonomic chair**
 - Seat height
 - Backrest height
 - Ability to turn while seated
 - Back tilt adjustment
 - Adjustable arms
 - Seat tilt adjustment
 - Ability to lean back
 - Ability to track posture changes
 - Carpet casters/hard floor casters
 - Intuitive, easy to use control

Ergonomic chair recommendations

- **Seat height and slope**
 - Minimum range of 16 to 20.5 in based on a compressed seat (ANSI)
 - 5 to 15° forward tilt to 5° backward tilt (Lueder, 1986)

- **Seat depth and width**
 - Chairs depth should not exceed 16.8" and the width of the seat surface be not less than 15.7" (Grandjean et al, 1973).
 - Seat depth: 15 to 17 in (ANSI)
 - Seat width: 18.2 in (ANSI)

- **Contouring and cushioning**
 - Seat cushion thickness range from 11.5 to 2" (Lueder, 1986).

- **Seat back parameters**
 - Seat back angle: a minimum range of 90° to 105° with the seat pan, up to 120° (ANSI)
 - Seat back width: at least 12" in the lumbar region.
 - Seat back height: a minimum of 19.5" (Lueder, 1986). As a backrest reclines, the lumbar support moves upward relative to the lumbar spine (Anderson, 1987).
Dynamic vs. static sitting

- Dynamic vs. static sitting study (Van Dieen et al., *ergonomics*, June, 2001)
 - They tested 3 chairs (fixed angle, dynamic angle A, and dynamic angle B). Subjects worked for 3 hours on CAD, word processing, and reading tasks. Measured spinal elongation, neck posture, back EMG.
 - Spinal elongation significantly greater for dynamic chairs.
 - Neck posture unaffected by dynamic sitting.
 - Back EMG depends on the task.

Effects of a chair headrest

- Effects of a chair headrest study (Monroe et al., 2001, proc. HFES, 1, 1082-6).
 - Studied effects of a reclined posture with headrest on typing.
 - Found significantly less muscle activity with this posture for:
 - Neck (>35% reduction)
 - Back (>34% reduction)
 - Found no differences in typing accuracy.

Workstation evaluation

- Effects of a chair headrest study (Monroe et al., 2001, proc. HFES, 1, 1082-6).
 - Studied effects of a reclined posture with headrest on typing.
 - Found significantly less muscle activity with this posture for:
 - Neck (>35% reduction)
 - Back (>34% reduction)
 - Found no differences in typing accuracy.

Assignment # 2 due (7/20 Tue)

- Assignment # 2 (Anthropometry for ENVD)
 - Write about “relation of anthropometric theory and data application (interior design) or ENVD reference standards”.
 - Format:
 - a single space, 5-6 pages, 12 fonts,
 - Include text citations and references (APA style).
 - Should incorporate at least 1–2 references from professional journals.

Discussion

- The design of work space includes:
 - The work envelope
 - Work surfaces such as desks, tables, etc.
 - Task lighting as well as layout/work area
 - Spatial configuration of the physical work area
- Bias thoughts in environmental design (i.e., built environment, interior design, etc.)
- Related to the subject of the design work places, what are the examples of work situations for environmental design were not well designed?
- Related to the subject, what are the good examples of environmental design applications in environmental design (i.e., interior design)?

Assignment # 2 due (7/20 Tue)

- Contents
 - Title and your name
 - Introduction
 - Objectives
 - Method
 - Findings
 - Conclusions/Discussions
 - References
- Presentation in Power point (Tuesday)
Reading

- Reading assignments:
 - Sanders (1993), Ch. 14